- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lee, H-P (3)
-
Das, S (2)
-
Forlizzi, J (2)
-
Bayram, C. (1)
-
Gao, L (1)
-
Liu, R. (1)
-
Meyer, J. (1)
-
Schaller, R. D. (1)
-
Von_Davier, TS (1)
-
Yang, S (1)
-
Yang, Y-J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
How do practitioners who develop consumer AI products scope, motivate, and conduct privacy work? Respecting pri- vacy is a key principle for developing ethical, human-centered AI systems, but we cannot hope to better support practitioners without answers to that question. We interviewed 35 industry AI practitioners to bridge that gap. We found that practitioners viewed privacy as actions taken against pre-defined intrusions that can be exacerbated by the capabilities and requirements of AI, but few were aware of AI-specific privacy intrusions documented in prior literature. We found that their privacy work was rigidly defined and situated, guided by compliance with privacy regulations and policies, and generally demoti- vated beyond meeting minimum requirements. Finally, we found that the methods, tools, and resources they used in their privacy work generally did not help address the unique pri- vacy risks introduced or exacerbated by their use of AI in their products. Collectively, these findings reveal the need and opportunity to create tools, resources, and support structures to improve practitioners’ awareness of AI-specific privacy risks, motivations to do AI privacy work, and ability to ad- dress privacy harms introduced or exacerbated by their use of AI in consumer products.more » « less
-
Lee, H-P; Yang, Y-J; Von_Davier, TS; Forlizzi, J; Das, S (, ACM)Privacy is a key principle for developing ethical AI technologies, but how does including AI technologies in products and services change privacy risks? We constructed a taxonomy of AI privacy risks by an- alyzing 321 documented AI privacy incidents. We codifed how the unique capabilities and requirements of AI technologies described in those incidents generated new privacy risks, exacerbated known ones, or otherwise did not meaningfully alter the risk. We present 12 high-level privacy risks that AI technologies either newly created (e.g., exposure risks from deepfake pornography) or exacerbated (e.g., surveillance risks from collecting training data). One upshot of our work is that incorporating AI technologies into a product can alter the privacy risks it entails. Yet, current approaches to privacy-preserving AI/ML (e.g., federated learning, diferential pri- vacy, checklists) only address a subset of the privacy risks arising from the capabilities and data requirements of AI.more » « less
-
Meyer, J.; Liu, R.; Schaller, R. D.; Lee, H-P; Bayram, C. (, Journal of Physics: Photonics)
An official website of the United States government

Full Text Available